

BMW Partikelfilter-Fehlermeldung

Systematischer Leitfaden für Kfz-Techniker zur Diagnose und Behebung von DPF-Fehlermeldungen bei BMW-Dieselfahrzeugen

Ziel und Anwendungsbereich

Problemstellung

Dieser Leitfaden unterstützt KfzTechniker und Werkstätten bei der
systematischen Fehlersuche, wenn
bei BMW-Dieselfahrzeugen trotz
gereinigtem oder neuwertigem
Filter weiterhin eine PartikelfilterFehlermeldung oder ein zu hoher
Abgasgegendruck angezeigt wird.

Inhalt

Der Leitfaden erklärt den Aufbau der Druckmesssysteme (Differenzvs. Absolutdrucksensor), typische Fehlerbilder, Sollwerte und systematische Prüfschritte zur schnellen Fehleridentifikation und behebung.

Funktionsprinzip der Druckmessung

Der Dieselpartikelfilter (DPF) überwacht seinen Beladungszustand über Drucksensoren. BMW nutzt je nach Motorvariante verschiedene Sensorprinzipien, die unterschiedliche Vor- und Nachteile aufweisen.

Differenzdrucksensor

Misst Druck vor und nach dem DPF über zwei Schläuche. Standard bei BMW, VW, Audi, Mercedes. Sehr präzise, aber empfindlich gegen Schlauchverstopfung.

Absolutdrucksensor

Misst nur den Druck vor dem DPF über einen Einzelschlauch, Differenz wird im Steuergerät berechnet. BMW N57-Motoren (ab Euro 5). Günstiger, aber anfälliger für Plausibilitätsfehler.

BMW-spezifische Sensorsysteme

Je nach Motorcode und Baujahr verwendet BMW unterschiedliche Druckmesssysteme. Die Kenntnis des jeweiligen Systems ist entscheidend für die korrekte Diagnose.

N57 (Euro 5)

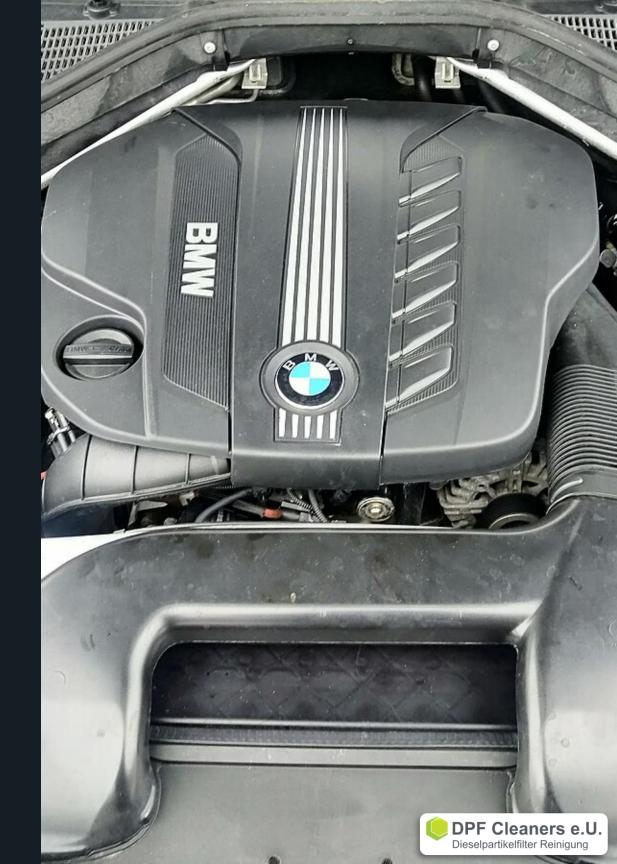
E.

Absolutdrucksensor (Einzelschlauch)

Differenzdruck wird softwareseitig errechnet. Besonderheit: Anfällig für Plausibilitätsfehler bei Spannungsabweichungen.

M57, B47, B57

Klassischer Differenzdrucksensor


Direkte Messung vor und nach DPF über zwei Schläuche. Robusteres System mit höherer Messgenauigkeit.

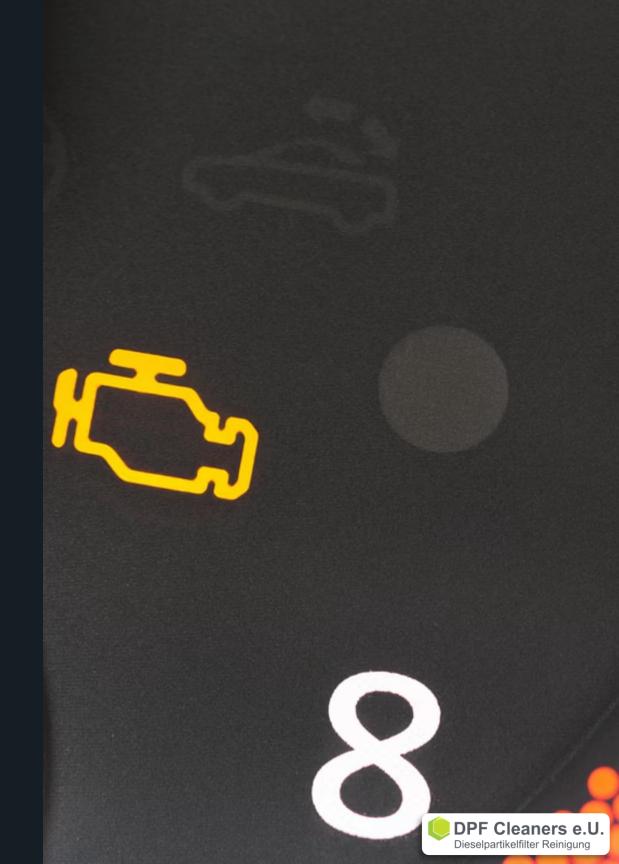
M57N / N57N

Mischformen

Modelljahrabhängige Varianten. Systemprüfung vor Diagnose erforderlich.

Typische Symptome und Fehlercodes

Anzeichen


- Anzeige: "Partikelfilter prüfen"
- Fehlercodes: P244B,
 P2452, P2453, P2455
- Leerlaufdruck normal,
 aber unter Last zu hoch
- Kein Leistungsverlust, aber DPF-Warnlampe aktiv
- Nach DPF-Reinigung weiterhin
 Fehlermeldung

Fehlercode-Bedeutung

P244B: Zu hoher Differenzdruck – häufigster Code bei Sensorproblemen

P2455: Signalspannung zu hoch – deutet auf elektrisches Problem hin

P2452/P2453: Drucksensor Bereichs-/Leistungsproblem

Systematische Diagnose-Prüfschritte

Fehlercodes auslesen

Primäre Eingrenzung: P244B (zu hoher Differenzdruck), P2455 (Signalspannung zu hoch). Dokumentation aller aktiven und gespeicherten Codes.

Physische DPF-Messung

Sollwert: < 30 mbar bei sauberem Filter. Ergebnis dokumentieren. Dies bestätigt den mechanischen Zustand des Filters.

Spannungsversorgung prüfen

5,0 V ± 0,1 V zwischen Versorgung und Masse. Bei > 5,5 V: Kabelbruch oder Übergangswiderstand möglich.

Druckleitungen kontrollieren

Frei, nicht verstopft oder vertauscht. Besonders wichtig bei Zwei-Schlauch-Systemen. Auf Rußablagerungen achten.

Sensorwerte unter Last

Differenzdruck sollte linear ansteigen (kein Sprung auf 500 mbar). Live-Daten während Testfahrt aufzeichnen.

Steuergerät anlernen

Nach Sensor- oder Filtertausch Pflicht. DPF-Werte im Steuergerät zurücksetzen und Lernwerte neu initialisieren.

Praxisbeispiel aus der Werkstatt

Fallstudie: BMW 3er N57-Motor

Ein BMW 3er mit N57-Motor zeigte nach professioneller DPF-Reinigung (Endwert 24 mbar – deutlich unter Sollwert) weiterhin 500 mbar unter Last an.

Diagnose: Nach systematischer Prüfung stellte sich heraus: Einzelschlauch-Absolutdrucksensor defekt.

Lösung: Nach Sensortausch und Rücksetzen der Lernwerte war der Fehler vollständig behoben.

Schlussfolgerung: Ein sauberes Filterelement kann trotzdem eine Fehlermeldung auslösen, wenn Sensor- oder Spannungsdaten unplausibel sind.

Dieses Beispiel aus der Praxis von DPF Cleaners Linz zeigt deutlich: In 80% der Fälle liegt die Ursache nicht am Filter selbst, sondern an der Sensorik oder Elektrik.

Werkstattpraxis-Checkliste

🔽 Vor der Reparatur

- Immer Sensorik pr

 üfen, bevor erneut gereinigt oder getauscht wird
- Messwerte dokumentieren (Leerlauf, Teillast, Volllast)
- Spannungsversorgung kontrollieren

🔽 Nach der Reparatur

- DPF-Werte im Steuergerät zurücksetzen
- BMW-spezifische Sensorik (N57):
 Druckwerte im Live-Datenmodus vergleichen
- Testfahrt mit Datenaufzeichnung durchführen

☑ Bei wiederkehrenden Fehlern

- Sensor ersetzen bei
 Sprungverhalten > 400 mbar unter
 Last
- Spannung prüfen bei Fehler P2455
- Leitungen auf Rußblockade prüfen
- Softwarestand (DPF-Regeneration) prüfen

DPF Cleaners e.U. – Ihr Fachpartner

Dieser Leitfaden wurde erstellt von DPF Cleaners e.U., Spezialist für DPF-Diagnose und hydrodynamische Reinigung in Linz, Oberösterreich.

Unsere Leistungen:

- Dokumentierte DPF-Prüfungen mit Messwertprotokoll
- Sensor- und Elektrikprüfung bei BMW-Fahrzeugen
- Schulungen und technische
 Unterstützung für Werkstätten
- Hydrodynamische Filterreinigung

Standort |

Fichtenstraße 44020 Linz

Kontakt

+43 (0)664 99216888

Web

www.dpf-cleaners.at

80% der DPF-Fehlermeldungen sind Sensorprobleme

Eine BMW Partikelfilter-Fehlermeldung ist häufig ein Sensor- oder Spannungsproblem, nicht ein verstopfter DPF. Mit einer strukturierten Prüfung der Messsensorik lassen sich 80% dieser Fehlermeldungen ohne Austausch beheben.

80%

30

5.0V

Sensorprobleme

mbar Sollwert

Spannung

Anteil der Fehlermeldungen durch defekte Sensorik statt verstopftem Filter

Maximaler Differenzdruck bei sauberem Filter

Sollwert für Sensorversorgung (±0,1V Toleranz)

Dieser Leitfaden dient als Werkstatt-Checkliste und kann direkt als PDF-Dokument an Kunden oder Partner weitergegeben werden.

